Advertisement
Original article|Articles in Press

Development of biotissue training models for anastomotic suturing in pancreatic surgery

Published:February 08, 2023DOI:https://doi.org/10.1016/j.hpb.2023.02.002

      Abstract

      Background

      Anastomotic suturing is the Achilles heel of pancreatic surgery. Especially in laparoscopic and robotically assisted surgery, the pancreatic anastomosis should first be trained outside the operating room. Realistic training models are therefore needed.

      Methods

      Models of the pancreas, small bowel, stomach, bile duct, and a realistic training torso were developed for training of anastomoses in pancreatic surgery. Pancreas models with soft and hard textures, small and large ducts were incrementally developed and evaluated. Experienced pancreatic surgeons (n = 44) evaluated haptic realism, rigidity, fragility of tissues, and realism of suturing and knot tying.

      Results

      In the iterative development process the pancreas models showed high haptic realism and highest realism in suturing (4.6 ± 0.7 and 4.9 ± 0.5 on 1–5 Likert scale, soft pancreas). The small bowel model showed highest haptic realism (4.8 ± 0.4) and optimal wall thickness (0.1 ± 0.4 on −2 to +2 Likert scale) and suturing behavior (0.1 ± 0.4). The bile duct models showed optimal wall thickness (0.3 ± 0.8 and 0.4 ± 0.8 on −2 to +2 Likert scale) and optimal tissue fragility (0 ± 0.9 and 0.3 ± 0.7).

      Conclusion

      The biotissue training models showed high haptic realism and realistic suturing behavior. They are suitable for realistic training of anastomoses in pancreatic surgery which may improve patient outcomes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to HPB
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sánchez-Velázquez P.
        • Muller X.
        • Malleo G.
        • Park J.S.
        • Hwang H.K.
        • Napoli N.
        • et al.
        Benchmarks in pancreatic surgery: a novel tool for unbiased outcome comparisons.
        Ann Surg. 2019; 270: 211-218
        • Gagner M.
        • Pomp A.
        Laparoscopic pylorus-preserving pancreatoduodenectomy.
        Surg Endosc. 1994; 8: 408-410
        • Zureikat A.H.
        • Moser A.J.
        • Boone B.A.
        • Bartlett D.L.
        • Zenati M.
        • Zeh 3rd, H.J.
        250 robotic pancreatic resections: safety and feasibility.
        Ann Surg. 2013; 258 (; discussion 9-62): 554-559
        • Zureikat A.H.
        • Beane J.D.
        • Zenati M.S.
        • Al Abbas A.I.
        • Boone B.A.
        • Moser A.J.
        • et al.
        500 minimally invasive robotic pancreatoduodenectomies: one decade of optimizing performance.
        Ann Surg. 2019;
        • Vining C.C.
        • Skowron K.B.
        • Hogg M.E.
        Robotic gastrointestinal surgery: learning curve, educational programs and outcomes.
        Updates Surg. 2021; 73: 799-814
        • Aiolfi A.
        • Lombardo F.
        • Bonitta G.
        • Danelli P.
        • Bona D.
        Systematic review and updated network meta-analysis comparing open, laparoscopic, and robotic pancreaticoduodenectomy.
        Updates Surg. 2021; 73: 909-922
        • Nickel F.
        • Haney C.M.
        • Kowalewski K.F.
        • Probst P.
        • Limen E.F.
        • Kalkum E.
        • et al.
        Laparoscopic versus open pancreaticoduodenectomy: a systematic review and meta-analysis of randomized controlled trials.
        Ann Surg. 2020; 271: 54-66
        • Haney C.M.
        • Karadza E.
        • Limen E.F.
        • de Santibanes M.
        • Kinny-Köster B.
        • Müller P.C.
        • et al.
        Training and learning curves in minimally invasive pancreatic surgery: from simulation to mastery.
        J Pancreatol. 2020; 3: 101-110
        • Babineau T.J.
        • Becker J.
        • Gibbons G.
        • Sentovich S.
        • Hess D.
        • Robertson S.
        • et al.
        The “cost” of operative training for surgical residents.
        Arch Surg. 2004; 139 (; discussion 9-70): 366-369
        • Kowalewski K.F.
        • Schmidt M.W.
        • Proctor T.
        • Pohl M.
        • Wennberg E.
        • Karadza E.
        • et al.
        Skills in minimally invasive and open surgery show limited transferability to robotic surgery: results from a prospective study.
        Surg Endosc. 2018; 32: 1656-1667
        • Tam V.
        • Zenati M.
        • Novak S.
        • Chen Y.
        • Zureikat A.H.
        • Zeh 3rd, H.J.
        • et al.
        Robotic pancreatoduodenectomy biotissue curriculum has validity and improves technical performance for surgical oncology fellows.
        J Surg Educ. 2017; 74: 1057-1065
        • de Rooij T.
        • van Hilst J.
        • Boerma D.
        • Bonsing B.A.
        • Daams F.
        • van Dam R.M.
        • et al.
        Impact of a nationwide training program in minimally invasive distal pancreatectomy (LAELAPS).
        Ann Surg. 2016; 264: 754-762
        • de Rooij T.
        • van Hilst J.
        • Topal B.
        • Bosscha K.
        • Brinkman D.J.
        • Gerhards M.F.
        • et al.
        Outcomes of a multicenter training program in laparoscopic pancreatoduodenectomy (LAELAPS-2).
        Ann Surg. 2019; 269: 344-350
        • Zwart M.J.W.
        • Nota C.L.M.
        • de Rooij T.
        • van Hilst J.
        • Te Riele W.W.
        • van Santvoort H.C.
        • et al.
        Outcomes of a multicenter training program in robotic pancreatoduodenectomy (LAELAPS-3).
        Ann Surg. 2022; 276: e886-e895
        • Gozen A.S.
        • Akin Y.
        Are structured curriculums for laparoscopic training useful? A review of current literature.
        Curr Opin Urol. 2015; 25: 163-167
        • Takagi K.
        • Umeda Y.
        • Yoshida R.
        • Yagi T.
        • Fujiwara T.
        • Zureikat A.H.
        • et al.
        Surgical training model and safe implementation of robotic pancreatoduodenectomy in Japan: a technical note.
        World J Surg Oncol. 2021; 19: 55
        • Schmidt M.W.
        • Köppinger K.F.
        • Fan C.
        • Kowalewski K.F.
        • Schmidt L.P.
        • Vey J.
        • et al.
        Virtual reality simulation in robot-assisted surgery: meta-analysis of skill transfer and predictability of skill.
        BJS Open. 2021; 5
        • Hogg M.E.
        • Tam V.
        • Zenati M.
        • Novak S.
        • Miller J.
        • Zureikat A.H.
        • et al.
        Mastery-Based virtual reality robotic simulation curriculum: the first step toward operative robotic proficiency.
        J Surg Educ. 2017; 74: 477-485
        • Vining C.C.
        • Hogg M.E.
        How to train and evaluate minimally invasive pancreas surgery.
        J Surg Oncol. 2020; 122: 41-48
        • Yoshioka R.
        • Imamura H.
        • Ichida H.
        • Gyoda Y.
        • Mizuno T.
        • Mise Y.
        • et al.
        Simulation training in pancreatico-jejunostomy using an inanimate biotissue model improves the technical skills of hepatobiliary-pancreatic surgical fellows.
        PLoS One. 2021; 16e0244915
        • Aggarwal R.
        • Mytton O.T.
        • Derbrew M.
        • Hananel D.
        • Heydenburg M.
        • Issenberg B.
        • et al.
        Training and simulation for patient safety.
        Qual Saf Health Care. 2010; 19: i34-i43
        • Zwart M.J.W.
        • Foppen M.
        • Hilst Jv
        • Rooij Td
        • Busch O.R.C.
        • Besselink M.G.
        How to teach and train laparoscopic pancreatoduodenectomy.
        Annals of Pancreatic Cancer. 2019; 2
        • Zwart M.J.W.
        • Jones L.R.
        • Balduzzi A.
        • Takagi K.
        • Vanlander A.
        • van den Boezem P.B.
        • et al.
        Added value of 3D-vision during robotic pancreatoduodenectomy anastomoses in biotissue (LAEBOT 3D2D): a randomized controlled cross-over trial.
        Surg Endosc. 2021; 35: 2928-2935
        • Zwart M.J.W.
        • Fuente I.
        • Hilst J.
        • de Rooij T.
        • van Dieren S.
        • van Rijssen L.B.
        • et al.
        Added value of 3D-vision during laparoscopic biotissue pancreatico- and hepaticojejunostomy (LAELAPS 3D2D): an international randomized cross-over trial.
        HPB. 2019; 21: 1087-1094
      1. LEARNBOT, Netherlands trial register 2020 Available from: https://www.trialregister.nl/trial/8898.

      2. Impact of a European training program for robot pancreatoduodenectomy using a video databank, da Vinci® simulator and robot biotissue anastomoses on clinical outcomes (LEARNBOT): a pan-European prospective study 2021 Available from: http://e-mips.com/learnbot.

        • Wei F.
        • Xu M.
        • Lai X.
        • Zhang J.
        • Yiengpruksawan A.
        • Lu Y.
        • et al.
        Three-dimensional printed dry lab training models to simulate robotic-assisted pancreaticojejunostomy.
        ANZ J Surg. 2019; 89: 1631-1635
        • Wei F.
        • Wang W.
        • Gong H.
        • Cao J.
        • Chen J.
        • Chen H.
        • et al.
        Reusable modular 3D-printed dry lab training models to simulate minimally invasive choledochojejunostomy.
        J Gastrointest Surg. 2021; 25: 1899-1901
        • Nabavi A.
        • Schipper J.
        [Simulation in surgical training].
        HNO. 2017; 65: 7-12
        • Schmidt C.R.
        • Harris B.R.
        • Musgrove K.A.
        • Rao P.
        • Marsh J.W.
        • Thomay A.A.
        • et al.
        Formal robotic training diminishes the learning curve for robotic pancreatoduodenectomy: implications for new programs in complex robotic surgery.
        J Surg Oncol. 2021; 123: 375-380
        • Jester A.L.
        • Chung C.W.
        • Becerra D.C.
        • Molly Kilbane E.
        • House M.G.
        • Zyromski N.J.
        • et al.
        The impact of hepaticojejunostomy leaks after pancreatoduodenectomy: a devastating source of morbidity and mortality.
        J Gastrointest Surg. 2017; 21: 1017-1024
        • Suzuki Y.
        • Fujino Y.
        • Tanioka Y.
        • Ajiki T.
        • Hiraoka K.
        • Takada M.
        • et al.
        Factors influencing hepaticojejunostomy leak following pancreaticoduodenal resection; importance of anastomotic leak test.
        Hepato-Gastroenterology. 2003; 50: 254-257
        • Kowalewski K.F.
        • Garrow C.R.
        • Proctor T.
        • Preukschas A.A.
        • Friedrich M.
        • Müller P.C.
        • et al.
        LapTrain: multi-modality training curriculum for laparoscopic cholecystectomy-results of a randomized controlled trial.
        Surg Endosc. 2018; 32: 3830-3838
        • Nickel F.
        • Haney C.M.
        • Müller-Stich B.P.
        • Hackert T.
        Not yet IDEAL? Evidence and learning curves of minimally invasive pancreaticoduodenectomy.
        Hepatobiliary Surg Nutr. 2020; 9: 812-814
        • Nickel F.
        • Hendrie J.D.
        • Stock C.
        • Salama M.
        • Preukschas A.A.
        • Senft J.D.
        • et al.
        Direct observation versus endoscopic video recording-based rating with the objective structured assessment of technical skills for training of laparoscopic cholecystectomy.
        Eur Surg Res. 2016; 57: 1-9
        • Wehrtmann F.S.
        • de la Garza J.R.
        • Kowalewski K.F.
        • Schmidt M.W.
        • Müller K.
        • Tapking C.
        • et al.
        Learning curves of laparoscopic roux-en-Y gastric bypass and sleeve gastrectomy in bariatric surgery: a systematic review and introduction of a standardization.
        Obes Surg. 2020; 30: 640-656
        • Schmidt M.W.
        • Haney C.M.
        • Kowalewski K.F.
        • Bintintan V.V.
        • Abu Hilal M.
        • Arezzo A.
        • et al.
        Development and validity evidence of an objective structured assessment of technical skills score for minimally invasive linear-stapled, hand-sewn intestinal anastomoses: the A-OSATS score.
        Surg Endosc. 2022; 36: 4529-4541
        • Oxford K.
        • Walsh G.
        • Bungay J.
        • Quigley S.
        • Dubrowski A.
        Development, manufacture and initial assessment of validity of a 3-dimensional-printed bowel anastomosis simulation training model.
        Can J Surg. 2021; 64 (E484-e90)
        • Botden S.M.
        • Christie L.
        • Goossens R.
        • Jakimowicz J.J.
        Training for laparoscopic Nissen fundoplication with a newly designed model: a replacement for animal tissue models?.
        Surg Endosc. 2010; 24: 3134-3140
        • Williams A.
        • McWilliam M.
        • Ahlin J.
        • Davidson J.
        • Quantz M.A.
        • Bütter A.
        A simulated training model for laparoscopic pyloromyotomy: is 3D printing the way of the future?.
        J Pediatr Surg. 2018; 53: 937-941
        • Ballouhey Q.
        • Micle L.
        • Grosos C.
        • Robert Y.
        • Binet A.
        • Arnaud A.
        • et al.
        A simulation model to support laparoscopic pyloromyotomy teaching.
        J Laparoendosc Adv Surg Tech. 2018; 28: 760-765
        • Orringer M.B.
        • Hennigar D.
        • Lin J.
        • Rooney D.M.
        A novel cervical esophagogastric anastomosis simulator.
        J Thorac Cardiovasc Surg. 2020; 160: 1598-1607
        • Barreira M.A.
        • Siveira D.G.
        • Rocha H.A.
        • Moura L.G.J.
        • Mesquita C.J.
        • Borges G.C.
        Model for simulated training of laparoscopic gastroenterostomy.
        Acta Cir Bras. 2017; 32: 81-89
        • Curtis N.J.
        • Foster J.D.
        • Miskovic D.
        • Brown C.S.B.
        • Hewett P.J.
        • Abbott S.
        • et al.
        Association of surgical skill assessment with clinical outcomes in cancer surgery.
        JAMA Surg. 2020; 155: 590-598
        • Birkmeyer J.D.
        • Finks J.F.
        • O'Reilly A.
        • Oerline M.
        • Carlin A.M.
        • Nunn A.R.
        • et al.
        Surgical skill and complication rates after bariatric surgery.
        N Engl J Med. 2013; 369: 1434-1442
        • Kowalewski K.F.
        • Garrow C.R.
        • Schmidt M.W.
        • Benner L.
        • Müller-Stich B.P.
        • Nickel F.
        Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying.
        Surg Endosc. 2019; 33: 3732-3740
        • Kowalewski K.F.
        • Hendrie J.D.
        • Schmidt M.W.
        • Garrow C.R.
        • Bruckner T.
        • Proctor T.
        • et al.
        Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon.
        Surg Endosc. 2017; 31: 2155-2165
        • Garrow C.R.
        • Kowalewski K.F.
        • Li L.
        • Wagner M.
        • Schmidt M.W.
        • Engelhardt S.
        • et al.
        Machine learning for surgical phase recognition: a systematic review.
        Ann Surg. 2021; 273: 684-693
        • Nickel F.
        • Cizmic A.
        • Chand M.
        Telestration and augmented reality in minimally invasive surgery: an invaluable tool in the age of COVID-19 for remote proctoring and telementoring.
        JAMA Surg. 2022; 2: 169-170