Advertisement

Association of indirect measurement of cell function by bioimpedance analysis with complications in oncologic hepatic surgery

Published:October 06, 2022DOI:https://doi.org/10.1016/j.hpb.2022.09.008

      Abstract

      Background

      Bioimpedance vector analysis (BIVA) is a reliable tool to assess body composition. The aim was to study the association of BIVA-derived phase angle (PA) and standardized PA (SPA) values and the occurrence of surgery-related morbidity.

      Methods

      Patients undergoing hepatectomy for cancer in two Italian centers were prospectively enrolled. BIVA was performed the morning of surgery. Patients were then stratified for the occurrence or not of postoperative morbidity.

      Results

      Out of 190 enrolled patients, 76 (40%) experienced postoperative complications. Patients with morbidity had a significant lower PA, SPA, body cell mass, and skeletal muscle mass, and higher extracellular water and fat mass. At the multivariate analysis, presence of cirrhosis (OR 7.145, 95% CI:2.712–18.822, p < 0.001), the Charlson comorbidity index (OR 1.236, 95% CI: 1.009–1.515, p = 0.041), the duration of surgery (OR 1.004, 95% CI:1.001–1.008, p = 0.018), blood loss (OR 1.002. 95% CI: 1.001–1.004, p = 0.004), dehydration (OR 10.182, 95% CI: 1.244–83.314, p = 0.030) and SPA < −1.65 (OR 3.954, 95% CI: 1.699–9.202, p = 0.001) were significantly and independently associated with the risk of complications.

      Discussion

      SPA value < −1.65 is associated with a higher risk of developing complications after liver resections. Introducing BIVA before hepatic resections may add valuable and independent information on the risk of morbidity.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to HPB
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Merath K.
        • Chen Q.
        • Bagante F.
        • et al.
        A multi-institutional international analysis of textbook outcomes among patients undergoing curative-intent resection of intrahepatic cholangiocarcinoma.
        JAMA Surg. 2019; 154e190571https://doi.org/10.1001/jamasurg.2019.0571
        • Kamiyama T.
        • Nakanishi K.
        • Yokoo H.
        • et al.
        Perioperative management of hepatic resection toward zero mortality and morbidity: analysis of 793 consecutive cases in a single institution.
        J Am Coll Surg. 2010; 211: 443-449https://doi.org/10.1016/j.jamcollsurg.2010.06.005
        • Giani A.
        • Cipriani F.
        • Famularo S.
        • et al.
        Performance of comprehensive complication index and clavien-dindo complication scoring system in liver surgery for hepatocellular carcinoma.
        Cancers (Basel). 2020; 12: 3868https://doi.org/10.3390/cancers12123868
        • Bhangui P.
        • Laurent A.
        • Amathieu R.
        • Azoulay D.
        Assessment of risk for non-hepatic surgery in cirrhotic patients.
        J Hepatol. 2012; 57: 874-884https://doi.org/10.1016/j.jhep.2012.03.037
        • Nicoll A.
        Surgical risk in patients with cirrhosis.
        J Gastroenterol Hepatol. 2012; 27: 1569-1575https://doi.org/10.1111/j.1440-1746.2012.07205.x
        • Bischoff S.C.
        • Bernal W.
        • Dasarathy S.
        • et al.
        ESPEN practical guideline: clinical nutrition in liver disease.
        Clin Nutr. 2020; 39: 3533-3562https://doi.org/10.1016/j.clnu.2020.09.001
        • Sandini M.
        • Bernasconi D.P.
        • Ippolito D.
        • et al.
        Preoperative computed tomography to predict and stratify the risk of severe pancreatic fistula after pancreatoduodenectomy.
        Medicine (Baltim). 2015; 94e1152https://doi.org/10.1097/MD.0000000000001152
        • Giani A.
        • Famularo S.
        • Riva L.
        • et al.
        Association between specific presurgical anthropometric indexes and morbidity in patients undergoing rectal cancer resection.
        Nutrition. 2020; 75–76110779https://doi.org/10.1016/j.nut.2020.110779
        • Nishigori T.
        • Obama K.
        • Sakai Y.
        Assessment of body composition and impact of sarcopenia and sarcopenic obesity in patients with gastric cancer.
        Transl Gastroenterol Hepatol. 2020; 5 (Published 2020 Apr 5): 22https://doi.org/10.21037/tgh.2019.10.13
        • Berardi G.
        • Antonelli G.
        • Colasanti M.
        • et al.
        Association of sarcopenia and body composition with short-term outcomes after liver resection for malignant tumors.
        JAMA Surg. 2020; 155e203336https://doi.org/10.1001/jamasurg.2020.3336
        • Runkel M.
        • Diallo T.D.
        • Lang S.A.
        • Bamberg F.
        • Benndorf M.
        • Fichtner-Feigl S.
        The role of visceral obesity, sarcopenia and sarcopenic obesity on surgical outcomes after liver resections for colorectal metastases.
        World J Surg. 2021; 45: 2218-2226https://doi.org/10.1007/s00268-021-06073-9
        • Lukaski H.C.
        • Kyle U.G.
        • Kondrup J.
        Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio.
        Curr Opin Clin Nutr Metab Care. 2017; 20: 330-339https://doi.org/10.1097/MCO.0000000000000387
        • Roccamatisi L.
        • Gianotti L.
        • Paiella S.
        • et al.
        Preoperative standardized phase angle at bioimpedance vector analysis predicts the outbreak of antimicrobial-resistant infections after major abdominal oncologic surgery: a prospective trial.
        Nutrition. 2021; 86111184https://doi.org/10.1016/j.nut.2021.111184
        • Pena N.F.
        • Mauricio S.F.
        • Rodrigues A.M.S.
        • et al.
        Association between standardized phase Angle, nutrition status, and clinical outcomes in surgical cancer patients.
        Nutr Clin Pract. 2019; 34: 381-386https://doi.org/10.1002/ncp.10110
        • Sandini M.
        • Paiella S.
        • Cereda M.
        • et al.
        Perioperative interstitial fluid expansion predicts major morbidity following pancreatic surgery: appraisal by bioimpedance vector analysis.
        Ann Surg. 2019; 270: 923-929https://doi.org/10.1097/SLA.0000000000003536
        • Ida S.
        • Watanabe M.
        • Yoshida N.
        • et al.
        Sarcopenia is a predictor of postoperative respiratory complications in patients with esophageal cancer.
        Ann Surg Oncol. 2015; 22: 4432-4437https://doi.org/10.1245/s10434-015-4559-3
        • Matthews L.
        • Bates A.
        • Wootton S.A.
        • Levett D.
        The use of bioelectrical impedance analysis to predict post-operative complications in adult patients having surgery for cancer: a systematic review.
        Clin Nutr. 2021; 40: 2914-2922https://doi.org/10.1016/j.clnu.2021.03.008
        • Cederholm T.
        • Jensen G.L.
        • Correia M.
        • et al.
        GLIM criteria for the diagnosis of malnutrition e a consensus report from the global clinical nutrition community.
        Clin Nutr. 2019; 38: 1-9https://doi.org/10.1016/j.clnu.2018.08.002
        • Lukaski H.
        • Piccoli A.
        Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions.
        in: Preedy V.R. Handbook of anthropometry: physical measures of human form in health and disease. Springer Science + Business Media, New York2012: 287-305
        • Piccoli A.
        • Rossi B.
        • Pillon L.
        • Bucciante G.
        A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph.
        Kidney Int. 1994; 46: 534e9https://doi.org/10.1038/ki.1994.305
        • Paiva S.I.
        • Borges L.R.
        • Halpern-Silveira D.
        • Assunção M.C.F.
        • Barros A.J.D.
        • Gonzalez M.C.
        Standardized phase angle from bioelectrical impedance analysis as prognostic factor for survival in patients with cancer.
        Support Care Cancer. 2011; 19: 187-192https://doi.org/10.1007/s00520-009-0798-9
        • Norman K.
        • Stobäus N.
        • Zocher D.
        • et al.
        Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer.
        Am J Clin Nutr. 2010; 92: 612-619https://doi.org/10.3945/ajcn.2010.29215
        • Schutz Y.
        • Kyle U.U.
        • Pichard C.
        Fat-free mass index and fat mass index percentiles in Caucasians aged 18-98 y.
        Int J Obes Relat Metab Disord. 2002; 26: 953-960https://doi.org/10.1038/sj.ijo.0802037
        • Walowski C.O.
        • Braun W.
        • Maisch M.J.
        • et al.
        Reference values for skeletal muscle mass - current concepts and methodological considerations.
        Nutrients. 2020; 12 (Published 2020 Mar 12): 755https://doi.org/10.3390/nu12030755
        • Janssen I.
        • Heymsfield S.B.
        • Ross R.
        Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability.
        J Am Geriatr Soc. 2002; 50: 889-896https://doi.org/10.1046/j.1532-5415.2002.50216.x
        • Sergi G.
        • Bussolotto M.
        • Perini P.
        • et al.
        Accuracy of bioelectrical impedance analysis in estimation of extracellular space in healthy subjects and in fluid retention states.
        Ann Nutr Metab. 1994; 38: 158-165https://doi.org/10.1159/000177806
        • Melloul E.
        • Hübner M.
        • Scott M.
        • et al.
        Guidelines for perioperative care for liver surgery: enhanced recovery after surgery (ERAS) society recommendations.
        World J Surg. 2016; 40: 2425-2440https://doi.org/10.1007/s00268-016-3700-1
        • Ishizawa T.
        • Hasegawa K.
        • Kokudo N.
        • et al.
        Risk factors and management of ascites after liver resection to treat hepatocellular carcinoma.
        Arch Surg. 2009; 144: 46-51https://doi.org/10.1001/archsurg.2008.511
        • Rahbari N.N.
        • Garden O.J.
        • Padbury R.
        • et al.
        Posthepatectomy liver failure: a definition and grading by the international study group of liver surgery (ISGLS).
        Surgery. 2011; 149: 713-724https://doi.org/10.1016/j.surg.2010.10.001
        • Dindo D.
        • Demartines N.
        • Clavien P.A.
        Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey.
        Ann Surg. 2004; 240: 205-213https://doi.org/10.1097/01.sla.0000133083.54934.ae
        • Slankamenac K.
        • Graf R.
        • Barkun J.
        • Puhan M.A.
        • Clavien P.A.
        The comprehensive complication index: a novel continuous scale to measure surgical morbidity.
        Ann Surg. 2013; 258: 1-7https://doi.org/10.1097/SLA.0b013e318296c732
        • Newgard C.D.
        • Lewis R.J.
        Missing data: how to best account for what is not known.
        JAMA. 2015; 314: 940-941https://doi.org/10.1001/jama.2015.10516
        • Kleinke K.
        • Reinecke J.
        • Salfrán D.
        • et al.
        Applied multiple imputation: advantages, pitfalls, new developments and applications in R. Springer nature.
        (Available from:)
        • Artinyan A.
        • Marshall C.L.
        • Balentine C.J.
        • et al.
        Clinical outcomes of oncologic gastrointestinal resections in patients with cirrhosis.
        Cancer. 2012; 118: 3494-3500https://doi.org/10.1002/cncr.26682
        • Shinkawa H.
        • Tanaka S.
        • Takemura S.
        • et al.
        Predictive value of the age-adjusted Charlson comorbidity index for outcomes after hepatic resection of hepatocellular carcinoma.
        World J Surg. 2020; 44: 3901-3914https://doi.org/10.1007/s00268-020-05686-w
        • Gurusamy K.S.
        • Li J.
        • Vaughan J.
        • Sharma D.
        • Davidson B.R.
        Cardiopulmonary interventions to decrease blood loss and blood transfusion requirements for liver resection.
        Cochrane Database Syst Rev. 2012; 2012: CD007338https://doi.org/10.1002/14651858.CD007338.pub3
        • Peng P.D.
        • van Vledder M.G.
        • Tsai S.
        • et al.
        Sarcopenia negatively impacts short-term outcomes in patients undergoing hepatic resection for colorectal liver metastasis.
        HPB. 2011; 13: 439-446https://doi.org/10.1111/j.1477-2574.2011.00301.x
        • Kobayashi A.
        • Kaido T.
        • Hamaguchi Y.
        • et al.
        Impact of sarcopenic obesity on outcomes in patients undergoing hepatectomy for hepatocellular carcinoma.
        Ann Surg. 2019; 269: 924-931https://doi.org/10.1097/SLA.0000000000002555
        • Martin L.
        • Birdsell L.
        • Macdonald N.
        • et al.
        Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index.
        J Clin Oncol. 2013; 31: 1539-1547https://doi.org/10.1200/JCO.2012.45.2722
        • Looijaard W.G.P.M.
        • Stapel S.N.
        • Dekker I.M.
        • et al.
        Identifying critically ill patients with low muscle mass: agreement between bioelectrical impedance analysis and computed tomography.
        Clin Nutr. 2020; 39: 1809-1817https://doi.org/10.1016/j.clnu.2019.07.020
        • Mueller T.C.
        • Reik L.
        • Prokopchuk O.
        • Friess H.
        • Martignoni M.E.
        Measurement of body mass by bioelectrical impedance analysis and computed tomography in cancer patients with malnutrition - a cross-sectional observational study.
        Medicine (Baltim). 2020; 99e23642https://doi.org/10.1097/MD.0000000000023642
        • Selberg O.
        • Selberg D.
        Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis.
        Eur J Appl Physiol. 2002; 86: 509-516https://doi.org/10.1007/s00421-001-0570-4
        • Gupta D.
        • Lammersfeld C.A.
        • Vashi P.G.
        • et al.
        Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIIB and IV non-small cell lung cancer.
        BMC Cancer. 2009; 9: 37https://doi.org/10.1186/1471-2407-9-37
        • Fernandes S.A.
        • de Mattos A.A.
        • Tovo C.V.
        • Marroni C.A.
        Nutritional evaluation in cirrhosis: emphasis on the phase angle.
        World J Hepatol. 2016; 8: 1205-1211https://doi.org/10.4254/wjh.v8.i29.1205
        • Beberashvili I.
        • Azar A.
        • Sinuani I.
        • et al.
        Longitudinal changes in bioimpedance phase angle reflect inverse changes in serum IL-6 levels in maintenance hemodialysis patients.
        Nutrition. 2014; 30: 297-304https://doi.org/10.1016/j.nut.2013.08.017
        • Norman K.
        • Stobäus N.
        • Pirlich M.
        • Bosy-Westphal A.
        Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters.
        Clin Nutr. 2012; 31: 854-861https://doi.org/10.1016/j.clnu.2012.05.008
        • Norman K.
        • Wirth R.
        • Neubauer M.
        • Eckardt R.
        • Stobäus N.
        The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer.
        J Am Med Dir Assoc. 2015; 16 (173.e17-173.e1.73E22)https://doi.org/10.1016/j.jamda.2014.10.024
        • Beberashvili I.
        • Azar A.
        • Sinuani I.
        • et al.
        Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients.
        Eur J Clin Nutr. 2014; 68: 683-689https://doi.org/10.1038/ejcn.2014.67
        • Alves F.D.
        • Souza G.C.
        • Clausell N.
        • Biolo A.
        Prognostic role of phase angle in hospitalized patients with acute decompensated heart failure.
        Clin Nutr. 2016; 35: 1530-1534https://doi.org/10.1016/j.clnu.2016.04.007
        • Cornejo-Pareja I.
        • Vegas-Aguilar I.M.
        • García-Almeida J.M.
        • et al.
        Phase angle and standardized phase angle from bioelectrical impedance measurements as a prognostic factor for mortality at 90 days in patients with COVID-19: a longitudinal cohort study [published online ahead of print, 2021 Feb 17].
        Clin Nutr. 2021; S0261–5614 (00091-1)https://doi.org/10.1016/j.clnu.2021.02.017
        • Jansen A.K.
        • Gattermann T.
        • da Silva Fink J.
        • et al.
        Low standardized phase angle predicts prolonged hospitalization in critically ill patients.
        Clin Nutr ESPEN. 2019; 34: 68-72https://doi.org/10.1016/j.clnesp.2019.08.011
        • Cardinal T.R.
        • Wazlawik E.
        • Bastos J.L.
        • Nakazora L.M.
        • Scheunemann L.
        Standardized phase angle indicates nutritional status in hospitalized preoperative patients.
        Nutr Res. 2010; 30: 594-600https://doi.org/10.1016/j.nutres.2010.08.009
      1. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American society of Anesthesiologists task force on preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration.
        Anesthesiology. 2017; 126: 376-393https://doi.org/10.1097/ALN.0000000000001452