Advertisement

Contribution of germline PALB2 variants to an unselected and prospectively registered pancreatic cancer patient cohort in Pakistan

Published:September 14, 2022DOI:https://doi.org/10.1016/j.hpb.2022.09.003

      Abstract

      Background

      Partner and localizer of BRCA2 (PALB2) is a pancreatic cancer (PC) susceptibility gene reported in Caucasians. However, limited data are available among Asians. We investigated the contribution of PALB2 germline variants to Pakistani PC patients.

      Methods

      150 unselected and prospectively enrolled PC patients were comprehensively screened for PALB2 variants, using denaturing high-performance liquid chromatography and DNA sequencing. Novel variants were investigated for their pathogenic effect using in-silico tools. Potentially functional variants were screened in 200 controls.

      Results

      Twenty-two different PALB2 variants were identified. A missense variant (p.Arg37His) was identified in a 48-years-old male patient with a family history of breast cancer. Another missense variant (p.Trp898Arg) was identified in a 48-years-old male patient with a family history of esophageal cancer. A novel 3′ downstream variant (c.∗480A>G) was detected in a 34-years-old female patient with family history of lung cancer. Another novel 3′ downstream variant (c.∗417A>C) was identified in a 41-years-old male patient. All these variants were absent in 200 controls. p.Arg37His and p.Trp898Arg were predicted as likely pathogenic. c.∗417A>C and c.∗480A>G were classified as variants of uncertain significance.

      Conclusion

      This is the first study that suggests a minimal contribution of PALB2 variants to PC risk in Pakistani population.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to HPB
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Klein A.P.
        Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors.
        Nat Rev Gastroenterol Hepatol. 2021; 18: 493-502https://doi.org/10.1038/s41575-021-00457-x
        • Rawla P.
        • Sunkara T.
        • Gaduputi V.
        Epidemiology of pancreatic cancer: global trends, etiology and risk factors.
        World J Oncol. 2019; 10: 10-27https://doi.org/10.14740/wjon1166
      1. Globocan 2020.
        (Cited March 2022)
        • Matsubayashi H.
        • Takaori K.
        • Morizane C.
        • Maguchi H.
        • Mizuma M.
        • Takahashi H.
        • et al.
        Familial pancreatic cancer: concept, management and issues.
        World J Gastroenterol. 2017; 23: 935-948https://doi.org/10.3748/wjg.v23.i6.935
        • Mandelker D.
        • Zhang L.
        • Kemel Y.
        • Stadler Z.K.
        • Joseph V.
        • Zehir A.
        • et al.
        Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing.
        Jama. 2017; 318: 825-835https://doi.org/10.1001/jama.2017.11137
        • Roberts N.J.
        • Norris A.L.
        • Petersen G.M.
        • Bondy M.L.
        • Brand R.
        • Gallinger S.
        • et al.
        Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer.
        Cancer Discov. 2016; 6: 166-175https://doi.org/10.1158/2159-8290.cd-15-0402
        • Hu C.
        • Hart S.N.
        • Polley E.C.
        • Gnanaolivu R.
        • Shimelis H.
        • Lee K.Y.
        • et al.
        Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer.
        Jama. 2018; 319: 2401-2409https://doi.org/10.1001/jama.2018.6228
        • Shindo K.
        • Yu J.
        • Suenaga M.
        • Fesharakizadeh S.
        • Cho C.
        • Macgregor-Das A.
        • et al.
        Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma.
        J Clin Oncol. 2017; 35: 3382-3390https://doi.org/10.1200/jco.2017.72.3502
        • Smith A.L.
        • Wong C.
        • Cuggia A.
        • Borgida A.
        • Holter S.
        • Hall A.
        • et al.
        Reflex testing for germline BRCA1, BRCA2, PALB2, and ATM mutations in pancreatic cancer: mutation prevalence and clinical outcomes from two Canadian research registries.
        JCO Precis Oncol. 2018; 2: 1-16https://doi.org/10.1200/po.17.00098
        • Rahman N.
        • Seal S.
        • Thompson D.
        • Kelly P.
        • Renwick A.
        • Elliott A.
        • et al.
        PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene.
        Nat Genet. 2007; 39: 165-167https://doi.org/10.1038/ng1959
        • Jones S.
        • Hruban R.H.
        • Kamiyama M.
        • Borges M.
        • Zhang X.
        • Parsons D.W.
        • et al.
        Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene.
        Science. 2009; 324: 217https://doi.org/10.1126/science.1171202
        • Yang X.
        • Leslie G.
        • Doroszuk A.
        • Schneider S.
        • Allen J.
        • Decker B.
        • et al.
        Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families.
        J Clin Oncol. 2020; 38: 674-685https://doi.org/10.1200/jco.19.01907
        • National Comprehensive Cancer Network (NCCN)
        Guidelines. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2022.
        (Cited April 2022)
        • Tischkowitz M.
        • Balmaña J.
        • Foulkes W.D.
        • James P.
        • Ngeow J.
        • Schmutzler R.
        • et al.
        Management of individuals with germline variants in PALB2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG).
        Genet Med. 2021; 23: 1416-1423https://doi.org/10.1038/s41436-021-01151-8
        • Astiazaran-Symonds E.
        • Goldstein A.M.
        A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer.
        J Gastroenterol. 2021; 56: 713-721https://doi.org/10.1007/s00535-021-01806-y
        • Ohmoto A.
        • Yachida S.
        • Kubo E.
        • Takai E.
        • Suzuki M.
        • Shimada K.
        • et al.
        Clinicopathologic features and germline sequence variants in young patients (≤40 Years old) with pancreatic ductal adenocarcinoma.
        Pancreas. 2016; 45: 1056-1061https://doi.org/10.1097/mpa.0000000000000574
        • Takeuchi S.
        • Doi M.
        • Ikari N.
        • Yamamoto M.
        • Furukawa T.
        Mutations in BRCA1, BRCA2, and PALB2, and a panel of 50 cancer-associated genes in pancreatic ductal adenocarcinoma.
        Nature. 2018; 8: 8105https://doi.org/10.1038/s41598-018-26526-x
        • Takai E.
        • Yachida S.
        • Shimizu K.
        • Furuse J.
        • Kubo E.
        • Ohmoto A.
        • et al.
        Germline mutations in Japanese familial pancreatic cancer patients.
        Oncotarget. 2016; 7: 74227-74235https://doi.org/10.18632/oncotarget.12490
        • Mizukami K.
        • Iwasaki Y.
        • Kawakami E.
        • Hirata M.
        • Kamatani Y.
        • Matsuda K.
        • et al.
        Genetic characterization of pancreatic cancer patients and prediction of carrier status of germline pathogenic variants in cancer-predisposing genes.
        EBioMedicine. 2020; 60103033https://doi.org/10.1016/j.ebiom.2020.103033
        • Yin L.
        • Wei J.
        • Lu Z.
        • Huang S.
        • Gao H.
        • Chen J.
        • et al.
        Prevalence of germline sequence variations among patients with pancreatic cancer in China.
        JAMA Netw Open. 2022; 5e2148721https://doi.org/10.1001/jamanetworkopen.2021.48721
        • Rashid M.U.
        • Muzaffar M.
        • Khan F.A.
        • Kabisch M.
        • Muhammad N.
        • Faiz S.
        • et al.
        Association between the BsmI polymorphism in the vitamin D receptor gene and breast cancer risk: results from a Pakistani case-control study.
        PLoS One. 2015; 10e0141562https://doi.org/10.1371/journal.pone.0141562
        • Rashid M.U.
        • Khan F.A.
        • Muhammad N.
        • Loya A.
        • Hamann U.
        Prevalence of PALB2 germline mutations in early-onset and familial breast/ovarian cancer patients from Pakistan.
        Cancer Res Treat. 2019; 51: 992-1000https://doi.org/10.4143/crt.2018.356
        • Li J.
        • Shi L.
        • Zhang K.
        • Zhang Y.
        • Hu S.
        • Zhao T.
        • et al.
        VarCards: an integrated genetic and clinical database for coding variants in the human genome.
        Nucleic Acids Res. 2018; 46: D1039-D1048https://doi.org/10.1093/nar/gkx1039
        • Chen Y.
        • Wang X.
        miRDB: an online database for prediction of functional microRNA targets.
        Nucleic Acids Res. 2020; 48: D127-D131https://doi.org/10.1093/nar/gkz757
        • Richards S.
        • Aziz N.
        • Bale S.
        • Bick D.
        • Das S.
        • Gastier-Foster J.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the.
        American College of Medical Genetics and Genomics and the Association for Molecular Pathology. 2015; 17: 405-424https://doi.org/10.1038/gim.2015.30
        • Joseph V.
        • Ravichandran V.
        • Offit K.
        Pathogenicity of mutation analyzer (PathoMAN): a fast automation of germline genomic variant curation in clinical sequencing.
        Journal of Clinical Oncology. 2017; 35: 1529https://doi.org/10.1200/JCO.2017.35.15_suppl.1529
        • Li Q.
        • Wang K.
        InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines.
        Am J Hum Genet. 2017; 100: 267-280https://doi.org/10.1016/j.ajhg.2017.01.004
        • Fountzilas E.
        • Eliades A.
        Clinical significance of germline cancer predisposing variants in unselected patients with pancreatic adenocarcinoma.
        Cancer. 2021; 13https://doi.org/10.3390/cancers13020198
        • Borecka M.
        • Zemankova P.
        • Vocka M.
        • Soucek P.
        • Soukupova J.
        • Kleiblova P.
        • et al.
        Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic.
        Cancer Genet. 2016; 209: 199-204https://doi.org/10.1016/j.cancergen.2016.03.003
        • Wieme G.
        • Kral J.
        • Rosseel T.
        Prevalence of germline pathogenic variants in cancer predisposing genes in Czech and Belgian pancreatic cancer patients.
        Cancer. 2021; 13https://doi.org/10.3390/cancers13174430
        • Grant R.C.
        • Holter S.
        • Borgida A.
        • Dhani N.C.
        • Hedley D.W.
        • Knox J.J.
        • et al.
        Comparison of practice guidelines, BRCAPRO, and genetic counselor estimates to identify germline BRCA1 and BRCA2 mutations in pancreatic cancer.
        J Genet Couns. 2018; 27: 988-995https://doi.org/10.1007/s10897-018-0212-1
        • Lowery M.A.
        • Wong W.
        • Jordan E.J.
        • Lee J.W.
        • Kemel Y.
        • Vijai J.
        • et al.
        Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms.
        J Natl Cancer Inst. 2018; 110: 1067-1074https://doi.org/10.1093/jnci/djy024
        • Brand R.
        • Borazanci E.
        • Speare V.
        Prospective study of germline genetic testing in incident cases of pancreatic adenocarcinoma.
        Cancer. 2018; 124: 3520-3527https://doi.org/10.1002/cncr.31628
        • Salo-Mullen E.E.
        • O’Reilly E.M.
        • Kelsen D.P.
        • Ashraf A.M.
        • Lowery M.A.
        • Yu K.H.
        • et al.
        Identification of germline genetic mutations in patients with pancreatic cancer.
        Cancer. 2015; 121: 4382-4388https://doi.org/10.1002/cncr.29664
        • Earl J.
        • Galindo-Pumariño C.
        • Encinas J.
        • Barreto E.
        • Castillo M.E.
        • Pachón V.
        • et al.
        A comprehensive analysis of candidate genes in familial pancreatic cancer families reveals a high frequency of potentially pathogenic germline variants.
        EBioMedicine. 2020; 53102675https://doi.org/10.1016/j.ebiom.2020.102675
        • Chaffee K.G.
        • Oberg A.L.
        • McWilliams R.R.
        • Majithia N.
        • Allen B.A.
        • Kidd J.
        • et al.
        Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history.
        Genet Med. 2018; 20: 119-127https://doi.org/10.1038/gim.2017.85
        • Nepomuceno T.C.
        • Carvalho M.A.
        • Rodrigue A.
        • Simard J.
        • Masson J.Y.
        • Monteiro A.N.A.
        • et al.
        PALB2 variants: protein domains and cancer susceptibility.
        Trends Cancer. 2021; 7: 188-197https://doi.org/10.1016/j.trecan.2020.10.002
        • Boonen R.
        • Rodrigue A.
        • Stoepker C.
        • Wiegant W.W.
        • Vroling B.
        • Sharma M.
        • et al.
        Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2.
        Nat Commun. 2019; 10: 5296https://doi.org/10.1038/s41467-019-13194-2
        • Rodrigue A.
        • Margaillan G.
        • Torres Gomes T.
        • Coulombe Y.
        • Montalban G.
        • da Costa E.S.C.S.
        • et al.
        A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor.
        Nucleic Acids Res. 2019; 47: 10662-10677https://doi.org/10.1093/nar/gkz780
        • Tischkowitz M.
        • Capanu M.
        • Sabbaghian N.
        • Li L.
        • Liang X.
        • Vallée M.P.
        • et al.
        Rare germline mutations in PALB2 and breast cancer risk: a population-based study.
        Hum Mutat. 2012; 33: 674-680https://doi.org/10.1002/humu.22022
        • Blanco A.
        • de la Hoya M.
        • Osorio A.
        • Diez O.
        • Miramar M.D.
        • Infante M.
        • et al.
        Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases.
        PLoS One. 2013; 8e67538https://doi.org/10.1371/journal.pone.0067538
        • Chandrasekharappa S.C.
        • Chinn S.B.
        • Donovan F.X.
        • Chowdhury N.I.
        • Kamat A.
        • Adeyemo A.A.
        • et al.
        Assessing the spectrum of germline variation in Fanconi anemia genes among patients with head and neck carcinoma before age 50.
        Cancer. 2017; 123: 3943-3954https://doi.org/10.1002/cncr.30802
        • Pearlman R.
        • Frankel W.L.
        • Swanson B.
        • Zhao W.
        • Yilmaz A.
        • Miller K.
        • et al.
        Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer.
        JAMA Oncol. 2017; 3: 464-471https://doi.org/10.1001/jamaoncol.2016.5194
        • Zhang J.
        • Tang S.
        • Zhang C.
        • Li M.
        • Zheng Y.
        • Hu X.
        • et al.
        Investigation of PALB2 mutation and correlation with immunotherapy biomarker in Chinese non-small cell lung cancer patients.
        Front Oncol. 2021; 11742833https://doi.org/10.3389/fonc.2021.742833
        • Shulman E.D.
        • Elkon R.
        Systematic identification of functional SNPs interrupting 3′UTR polyadenylation signals.
        PLos Genet. 2020; 16e1008977https://doi.org/10.1371/journal.pgen.1008977
        • Ge O.
        • Huang A.
        • Wang X.
        • Chen Y.
        • Ye Y.
        • Schomburg L.
        • et al.
        PALB2 upregulation is associated with a poor prognosis in pancreatic ductal adenocarcinoma.
        Oncol Lett. 2021; 21: 224https://doi.org/10.3892/ol.2021.12485
        • Aburjania N.
        • Truskinovsky A.M.
        • Overman M.J.
        • Lou E.
        Ampulla of vater adenocarcinoma in a BRCA2 germline mutation carrier.
        J Gastrointest Cancer. 2014; 45: 87-90https://doi.org/10.1007/s12029-013-9479-5
        • Rashid M.U.
        • Muhammad N.
        • Naeemi H.
        • Khan F.A.
        • Hassan M.
        • Faisal S.
        • et al.
        Spectrum and prevalence of BRCA1/2 germline mutations in Pakistani breast cancer patients: results from a large comprehensive study.
        Hered Cancer Clin Pract. 2019; 17: 27https://doi.org/10.1186/s13053-019-0125-5
        • Rashid M.U.
        • Zaidi A.
        • Torres D.
        • Sultan F.
        • Benner A.
        • Naqvi B.
        • et al.
        Prevalence of BRCA1 and BRCA2 mutations in Pakistani breast and ovarian cancer patients.
        Int J Cancer. 2006; 119: 2832-2839https://doi.org/10.1002/ijc.22269
        • Rashid M.U.
        • Muhammad N.
        • Faisal S.
        • Amin A.
        • Hamann U.
        Deleterious RAD51C germline mutations rarely predispose to breast and ovarian cancer in Pakistan.
        Breast Cancer Res Treat. 2014; 145: 775-784https://doi.org/10.1007/s10549-014-2972-0
        • Rashid M.U.
        • Gull S.
        • Asghar K.
        • Muhammad N.
        • Amin A.
        • Hamann U.
        • et al.
        Prevalence of TP53 germ line mutations in young Pakistani breast cancer patients.
        Fam Cancer. 2012; 11: 307-311https://doi.org/10.1007/s10689-012-9509-7
        • Rashid M.U.
        • Muhammad N.
        • Faisal S.
        • Amin A.
        • Hamann U.
        Constitutional CHEK2 mutations are infrequent in early-onset and familial breast/ovarian cancer patients from Pakistan.
        BMC Cancer. 2013; 13: 312https://doi.org/10.1186/1471-2407-13-312
        • Rashid M.U.
        • Muhammad N.
        • Khan F.A.
        • Shehzad U.
        • Naeemi H.
        • Malkani N.
        • et al.
        Prevalence of RECQL germline variants in Pakistani early-onset and familial breast cancer patients.
        Hered Cancer Clin Pract. 2020; 18: 25https://doi.org/10.1186/s13053-020-00159-6
        • Peretti U.
        • Cavaliere A.
        • Niger M.
        • Tortora G.
        • Di Marco M.C.
        • Rodriquenz M.G.
        • et al.
        Germinal BRCA1-2 pathogenic variants (gBRCA1-2pv) and pancreatic cancer: epidemiology of an Italian patient cohort.
        ESMO Open. 2021; 6100032https://doi.org/10.1016/j.esmoop.2020.100032
        • Kaneyasu T.
        • Mori S.
        • Yamauchi H.
        • Ohsumi S.
        • Ohno S.
        • Aoki D.
        • et al.
        Prevalence of disease-causing genes in Japanese patients with BRCA1/2-wildtype hereditary breast and ovarian cancer syndrome.
        NPJ Breast Cancer. 2020; 6: 1-13
        • Kwong A.
        • Shin V.Y.
        • Ho C.Y.
        • Khalid A.
        • Au C.H.
        • Chan K.K.
        • et al.
        Germline PALB2 mutation in high-risk Chinese breast and/or ovarian cancer patients.
        Cancers. 2021; 13: 4195
        • Taylor C.F.
        • Taylor G.R.
        Current and emerging techniques for diagnostic mutation detection.
        Molecular Diagnosis of Genetic Diseases. 2004; : 9-44
        • Li N.
        • Zethoven M.
        • McInerny S.
        • Healey E.
        • DeSilva D.
        • Devereux L.
        • et al.
        Contribution of large genomic rearrangements in PALB2 to familial breast cancer: implications for genetic testing.
        J Med Genet, 2022