Advertisement

Using machine learning to preoperatively stratify prognosis among patients with gallbladder cancer: a multi-institutional analysis

      Abstract

      Background

      Gallbladder cancer (GBC) is an aggressive malignancy associated with a high risk of recurrence and mortality. We used a machine-based learning approach to stratify patients into distinct prognostic groups using preperative variables.

      Methods

      Patients undergoing curative-intent resection of GBC were identified using a multi-institutional database. A classification and regression tree (CART) was used to stratify patients relative to overall survival (OS) based on preoperative clinical factors.

      Results

      CART analysis identified tumor size, biliary drainage, carbohydrate antigen 19-9 (CA19-9) levels, and neutrophil-lymphocyte ratio (NLR) as the factors most strongly associated with OS. Machine learning cohorted patients into four prognostic groups: Group 1 (n = 109): NLR ≤1.5, CA19-9 ≤20, no drainage, tumor size <5.0 cm; Group 2 (n = 88): NLR >1.5, CA19-9 ≤20, no drainage, tumor size <5.0 cm; Group 3 (n = 46): CA19-9 >20, no drainage, tumor size <5.0 cm; Group 4 (n = 77): tumor size <5.0 cm with drainage OR tumor size ≥5.0 cm. Median OS decreased incrementally with CART group designation (59.5, 27.6, 20.6, and 12.1 months; p < 0.0001).

      Conclusions

      A machine-based model was able to stratify GBC patients into four distinct prognostic groups based only on preoperative characteristics. Characterizing patient prognosis with machine learning tools may help physicians provide more patient-centered care.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to HPB
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hundal R.
        • Shaffer E.A.
        Gallbladder cancer: epidemiology and outcome.
        Clin Epidemiol. 2014; 99–109https://doi.org/10.2147/CLEP.S37357
        • Kanthan R.
        • Senger J.-L.
        • Ahmed S.
        • Kanthan S.C.
        Gallbladder cancer in the 21st century.
        JAMA Oncol. 2015; 1–26https://doi.org/10.1155/2015/967472
        • Goetze T.O.
        Gallbladder carcinoma: prognostic factors and therapeutic options.
        World J Gastroenterol. 2015; 21: 12211-12217https://doi.org/10.3748/wjg.v21.i43.12211
        • Aloia T.A.
        • Járufe N.
        • Javle M.
        • Maithel S.K.
        • Roa J.C.
        • Adsay V.
        • et al.
        Gallbladder cancer: expert consensus statement.
        HPB. 2015; 17: 681-690https://doi.org/10.1111/hpb.12444
        • Margonis G.A.
        • Gani F.
        • Buettner S.
        • Amini N.
        • Sasaki K.
        • Andreatos N.
        • et al.
        Rates and patterns of recurrence after curative intent resection for gallbladder cancer: a multi-institution analysis from the US extra-hepatic biliary malignancy Consortium.
        HPB. 2016; 18: 872-878https://doi.org/10.1016/j.hpb.2016.05.016
        • Amin M.B.
        • Edge S.
        • Greene F.
        • Byrd D.R.
        • Brookland R.K.
        • Washington M.K.
        • et al.
        AJCC cancer staging manual.
        8th ed. Springer International Publishing, 2017
        • Jiang W.
        • Zhao B.
        • Li Y.
        • Qi D.
        • Wang D.
        Modification of the 8th American Joint committee on cancer staging system for gallbladder carcinoma to improve prognostic precision.
        BMC Cancer. 2020; 20: 1-8https://doi.org/10.1186/s12885-020-07578-7
        • Giannis D.
        • Cerullo M.
        • Moris D.
        • Shah K.N.
        • Herbert G.
        • Zani S.
        • et al.
        Validation of the 8th edition American Joint commission on cancer (AJCC) gallbladder cancer staging system: prognostic discrimination and identification of key predictive factors.
        Cancers. 2021; 13: 547https://doi.org/10.3390/cancers13030547
        • Lohman EAJ de S.
        • Bitter TJJ de
        • Laarhoven van C.J.H.M.
        • Hermans J.J.
        • Haas RJ de
        • Reuver PR de
        The diagnostic accuracy of ct and MRI for the detection of lymph node metastases in gallbladder cancer: a systematic Review and meta-analysis.
        Eur J Radiol. 2019; 110: 156-162https://doi.org/10.1016/J.EJRAD.2018.11.034
        • Lim H.
        • Seo D.W.
        • Park D.H.
        • Lee S.S.
        • Lee S.K.
        • Kim M.H.
        • et al.
        Prognostic factors in patients with gallbladder cancer after surgical resection: analysis of 279 operated patients.
        J Clin Gastroenterol. 2013; 47: 443-448https://doi.org/10.1097/MCG.0B013E3182703409
        • Beal E.W.
        • Wei L.
        • Ethun C.G.
        • Black S.M.
        • Dillhoff M.
        • Salem A.
        • et al.
        Elevated NLR in gallbladder cancer and cholangiocarcinoma – making bad cancers even worse: results from the US extrahepatic biliary malignancy Consortium.
        HPB. 2016; 18: 950-957https://doi.org/10.1016/j.hpb.2016.08.006
        • Zhu S.
        • Yang J.
        • Cui X.
        • Zhao Y.
        • Tao Z.
        • Xia F.
        • et al.
        Preoperative platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio as predictors of clinical outcome in patients with gallbladder cancer.
        Sci Rep. 2019; 9: 1-9https://doi.org/10.1038/s41598-018-38396-4
        • Tran T.B.
        • Norton J.A.
        • Ethun C.G.
        • Pawlik T.M.
        • Buettner S.
        • Schmidt C.
        • et al.
        Gallbladder cancer presenting with jaundice: uniformly fatal or still potentially curable?.
        J Gastrointest Surg. 2017; 21: 1245-1253https://doi.org/10.1007/s11605-017-3440-z
        • Hashimoto D.A.
        • Rosman G.
        • Rus D.
        • Meireles O.R.
        Artificial intelligence in surgery: promises and perils.
        Ann Surg. 2018; 268: 70-76https://doi.org/10.1097/SLA.0000000000002693
        • Merath K.
        • Hyer J.M.
        • Mehta R.
        • Farooq A.
        • Bagante F.
        • Sahara K.
        • et al.
        Use of machine learning for prediction of patient risk of postoperative complications after liver, pancreatic, and colorectal surgery.
        J Gastrointest Surg. 2020; 24: 1843-1851https://doi.org/10.1007/s11605-019-04338-2
        • Tsilimigras D.I.
        • Mehta R.
        • Moris D.
        • Sahara K.
        • Bagante F.
        • Paredes A.Z.
        • et al.
        A machine-based approach to preoperatively identify patients with the most and least benefit associated with resection for intrahepatic cholangiocarcinoma: an international multi-institutional analysis of 1146 patients.
        Ann Surg Oncol. 2020; 27: 1110-1119https://doi.org/10.1245/s10434-019-08067-3
        • Tsilimigras D.I.
        • Mehta R.
        • Moris D.
        • Sahara K.
        • Bagante F.
        • Paredes A.Z.
        • et al.
        Utilizing machine learning for pre- and postoperative assessment of patients undergoing resection for BCLC-0, A and B hepatocellular carcinoma: implications for resection beyond the BCLC guidelines.
        Ann Surg Oncol. 2020; 27: 866-874https://doi.org/10.1245/s10434-019-08025-z
        • Dhillon A.
        • Singh A.
        Machine learning in healthcare data analysis: a survey.
        J Biol Today’s World. 2019; 8: 1-10https://doi.org/10.15412/J.JBTW.01070206
        • Johnson P.J.
        • Berhane S.
        • Kagebayashi C.
        • Satomura S.
        • Teng M.
        • Reeves H.L.
        • et al.
        Assessment of liver function in patients with hepatocellular carcinoma: a New evidence-based approach - the ALBI grade.
        J Clin Oncol. 2015; 33: 550-558https://doi.org/10.1200/JCO.2014.57.9151
        • Onodera T.
        • Goseki N.
        • Kosaki G.
        Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients.
        Nihon Geka Gakkai Zasshi. 1984; 85: 1001-1005
        • Creed J.
        • Gerke T.
        • Berglund A.
        MatSurv: survival analysis and visualization in MATLAB.
        J Open Source Softw. 2020; 5: 1830https://doi.org/10.21105/joss.01830
        • Bai Y.
        • Liu Z.-S.
        • Xiong J.-P.
        • Xu W.-Y.
        • Lin J.-Z.
        • Long J.-Y.
        • et al.
        Nomogram to predict overall survival after gallbladder cancer resection in China.
        World J Gastroenterol. 2018; 24: 5167https://doi.org/10.3748/WJG.V24.I45.5167
        • Chen M.
        • Cao J.
        • Zhang B.
        • Pan L.
        • Cai X.
        A nomogram for prediction of overall survival in patients with node-negative gallbladder cancer.
        J Cancer. 2019; 10: 3246https://doi.org/10.7150/JCA.30046
        • Xiao Z.
        • Shi Z.
        • Hu L.
        • Gao Y.
        • Zhao J.
        • Liu Y.
        • et al.
        A New nomogram from the SEER database for predicting the prognosis of gallbladder cancer patients after surgery.
        Ann Transl Med. 2019; 7: 738https://doi.org/10.21037/ATM.2019.11.112
        • Cai Z.
        • Guo P.
        • Si S.
        • Geng Z.
        • Chen C.
        • Cong L.
        Analysis of prognostic factors for survival after surgery for gallbladder cancer based on a bayesian network.
        Sci Rep. 2017; 7 (2017 71): 1-10https://doi.org/10.1038/s41598-017-00491-3
        • Yadav S.
        • Tella S.H.
        • Kommalapati A.
        • Mara K.
        • Prasai K.
        • Mady M.H.
        • et al.
        A novel clinically based staging system for gallbladder cancer.
        J Natl Compr Cancer Netw. 2020; 18: 151-159https://doi.org/10.6004/JNCCN.2019.7357
        • Dasari B.V.M.
        • Ionescu M.I.
        • Pawlik T.M.
        • Hodson J.
        • Sutcliffe R.P.
        • Roberts K.J.
        • et al.
        Outcomes of surgical resection of gallbladder cancer in patients presenting with jaundice: a systematic Review and meta-analysis.
        J Surg Oncol. 2018; 118: 477-485https://doi.org/10.1002/JSO.25186
        • Hawkins W.G.
        • DeMatteo R.P.
        • Jarnagin W.R.
        • Ben-Porat L.
        • Blumgart L.H.
        • Fong Y.
        Jaundice predicts advanced disease and early mortality in patients with gallbladder cancer.
        Ann Surg Oncol. 2004; 11 (2004 113): 310-315https://doi.org/10.1245/ASO.2004.03.011
        • Regimbeau J.M.
        • Fuks D.
        • Bachellier P.
        • Le Treut Y.P.
        • Pruvot F.R.
        • Navarro F.
        • et al.
        Prognostic value of jaundice in patients with gallbladder cancer by the AFC-GBC-2009 study group.
        Eur J Surg Oncol. 2011; 37: 505-512https://doi.org/10.1016/J.EJSO.2011.03.135
        • Liu F.
        • Hu H.-J.
        • Ma W.-J.
        • Yang Q.
        • Wang J.-K.
        • Li F.-Y.
        Prognostic significance of neutrophil–lymphocyte ratio and carbohydrate antigen 19-9 in patients with gallbladder carcinoma.
        Medicine (Baltim). 2019; 98https://doi.org/10.1097/MD.0000000000014550
        • Yu T.
        • Yu H.
        • Cai X.
        Preoperative prediction of survival in resectable gallbladder cancer by a combined utilization of ca 19-9 and carcinoembryonic antigen.
        Chin Med J. 2014; 127: 2299-2303https://doi.org/10.3760/CMA.J.ISSN.0366-6999.20131734
        • Kim M.
        • Kim H.
        • Han Y.
        • Sohn H.
        • Kang J.S.
        • Kwon W.
        • et al.
        Prognostic value of carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) in gallbladder cancer; 65 IU/ML of CA 19-9 is the New cut-off value for prognosis.
        Cancers. 2021; 13: 1089https://doi.org/10.3390/CANCERS13051089
        • Agrawal S.
        • Lawrence A.
        • Saxena R.
        Does CA 19-9 have prognostic relevance in gallbladder carcinoma (GBC)?.
        J Gastrointest Cancer. 2017; 49 (2017 492): 144-149https://doi.org/10.1007/S12029-016-9914-5
        • Hakeem A.R.
        • Papoulas M.
        • Menon K.V.
        The role of neoadjuvant chemotherapy or chemoradiotherapy for advanced gallbladder cancer – a systematic Review.
        Eur J Surg Oncol. 2019; 45: 83-91https://doi.org/10.1016/J.EJSO.2018.08.020
        • Sirohi B.
        • Mitra A.
        • Jagannath P.
        • Singh A.
        • Ramadvar M.
        • Kulkarni S.
        • et al.
        Neoadjuvant chemotherapy in patients with locally advanced gallbladder cancer.
        Futur Oncol. 2015; (1501–9)https://doi.org/10.2217/FON.14.308
        • Chaudhari V.A.
        • Ostwal V.
        • Patkar S.
        • Sahu A.
        • Toshniwal A.
        • Ramaswamy A.
        • et al.
        Outcome of neoadjuvant Chemotherapy in “locally advanced/borderline resectable” gallbladder cancer: the Need to define indications.
        HPB. 2018; 20: 841-847https://doi.org/10.1016/J.HPB.2018.03.008
        • Primrose J.N.
        • Fox R.P.
        • Palmer D.H.
        • Malik H.Z.
        • Prasad R.
        • Mirza D.
        • et al.
        Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study.
        Lancet Oncol. 2019; 20: 663-673https://doi.org/10.1016/S1470-2045(18)30915-X
      1. Comparison of chemotherapy before and after surgery versus after surgery alone for the treatment of gallbladder cancer - full text view - ClinicalTrials.gov.
        (Available at:)